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Abstract

The total duration of drawdowns is shown to be an efficient and robust estimator of Sharpe ratios. Its properties
are distribution-dependent: the expected total drawdown duration is smaller for heavy-tailed returns than for
Gaussian ones. As a consequence, in leptokurtic market conditions, the new estimator yields smaller Sharpe
ratios than moment-based estimators, which implies that the standard estimator overestimates the information
content of prices when the return distribution has heavy tails. Accordingly, using the standard estimator for
taking trend-following decisions enhances large price fluctuations.

(JEL: C14, C58)
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Introduction

Sharpe ratios (Sharpe, 1964) appear naturally in financial analysis and understandably so: they are nothing
else than signal-to-noise ratios, a fundamental quantity in signal analysis. In a Gaussian world, they are also
equivalent to the t-statistics. Finance does not live in an ideal world, however, and many problems arise
in practice. Sharpe ratio’s distribution (Lo, 2002), bias (Miller and Gehr, 1978; Jobson and Korkie, 1981)
and corrections due to serial correlations (Lo, 2002; Mertens, 2002; Christie, 2005; Opdyke, 2007) have been
characterized. Better estimating methods use the Generalized Moments Method (Lo, 2002; Christie, 2005) and
block bootstraps (Ledoit and Wolf, 2008). Although Sharpe ratios only depend on the first and second moments
of price returns, their variance depends on the third and fourth moments (Lo, 2002; Mertens, 2002; Christie,
2005; Opdyke, 2007). Given the definition of the Sharpe ratios, it is not surprising that all these methods rely
on the computation of moments of price returns. But as noted e.g. in Opdyke (2007), this may be problematic
as the fourth moment may not be defined (Dacorogna et al., 2001; Jondeau and Rockinger, 2003).

Here, I propose a new way to estimate Sharpe ratios that does not require the computation of any moment
and that may be extended to measure the drift of time series with infinite variance. It is based on the fact that
the total duration of all drawdowns in a price time series of a given length is a monotonic function of the Sharpe
ratio; by symmetry, the same holds for the total duration of all drawups. As a consequence, one may estimate
Sharpe ratios by computing the difference between the total durations of drawups and drawdowns. This quantity
is bounded by definition and leads to an estimator that is both robust to outliers and more efficient than direct
estimates of Sharpe ratios for heavy-tailed data.

Intuitively, the sum of all drawdown durations, i.e., the total drawdown duration of a time series of fixed
length is linked to the number of upper price records since a new price return pushes the price either to an
all time high (a new upper record) or to a drawdown (see Fig. 1). This implies that if n is the length of a
time series and R+ is the number of its upper price records, the total drawdown duration, denoted by T−, is
T− = n−R+. Because of this equivalence, total drawdown/up duration and the numbers of price records lead
to two equivalent estimators; accordingly, we will use either wordings. Assuming that log prices are random
walks, drawdown/up durations are determined by first-passage times, themselves derived from persistence (or
survival) properties (Redner, 2001). The connection between persistence and price dynamics, especially in the
context of market microstructure, is well known (Lo et al., 2002; Eisler et al., 2009).

Persistence is at the core of a noteworthy recent result about discrete-time unbiased random walks, derived
in a different scientific field. In a financial context, it may be stated as follows: the distribution of the number of
upper (or lower) records of a price time series with independent and identically distributed return (i.i.d.), of a
fixed length, does not depend on the increment distribution provided that the latter is symmetric and continuous
(Majumdar and Ziff, 2008). This universality is behind the robustness and power of the r-statistics, a family of
statistics based on the number of records of a time series, which not only provides a powerful non-parametric
location test (Challet, 2015) but also, as shown here, an efficient estimator of Sharpe ratios. Their robustness
come from the fact that the influence of outliers is much dampened because sample values are transformed into
an integer number with bounded admissible values.

Majumdar et al. (2012) show that the distribution of the number of records converges to a Gaussian
distribution in the limit of infinitely long time series provided that the price return distribution has a finite
variance. Even better, the support of the finite-size sample distribution of the new estimator is bounded,
contrarily to that of Sharpe ratios (and t-statistics), and is accordingly more peaked than a normal distribution
(Challet, 2015). When the true Sharpe ratio is different from zero, the expected number of records and its
variance are distribution-dependent; exact expressions are only known for exponentially distributed increments,
hence one has to resort to approximations and numerical simulations for other types of distribution in the limits
of large and small Sharpe ratios.
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Figure 1: Example log price time series (black lines), its running maximum (red lines), and running minimum
(blue lines). The number of upper (lower) records R+ (R−) is equal to the number of jumps of the running
maximum (minimum) plus one since the first point counts as a record by convention: here R+ = 3 and R− = 4.
The total drawdown duration is T− = 7 and the total drawup duration is T+ = 6. Clearly, R+ + T− = R− + T+ =
10, the number of returns.

Drawdown durations are by definition bounded integer numbers, which is not optimal to estimate a real
number. The solution comes from random permutations. Assuming that the price returns are i.i.d., one can
shuffle their order at will. As a consequence, the resulting (shuffled) price time series will be an equally valid
representation of a given set of price returns and may lead to a different number of upper and lower records.
Thus, to obtain a more precise estimate of the Sharpe ratio, one takes the average between the total drawdown
and drawup durations over many such permutations (see Fig. 3 for a graphical explanation).

The structure of this paper is as follows: Section 1 introduces the necessary notations to define price
record statistics and shows that when prices have a positive trend, heavy-tailed increments lead to more upper
price records than Gaussian increments; a mathematical derivation of the expected number of price records for
Student’s t-distributed increments is reported in Appendix A, which focuses on the case of tail exponent equal
to 4 (3 degrees of freedom) for the sake of analytical tractability. Section 2 investigates the efficiency of the
number of price records as Sharpe ratio estimators relative to the vanilla estimator and shows that the new
estimator is several times more efficient than moment-based methods for heavy-tailed variables and almost as
efficient as the vanilla estimator in the case of Gaussian variables. Section 3 estimates the 252-day rolling Sharpe
ratios of SPY and of 400 US equities with both methods. It turns out that in leptokurtic times, the estimates
from both methods may differ very significantly because the vanilla Sharpe ratio estimator is not only more
volatile, but also systematically overestimates the information content of price time series that have heavy-tailed
returns. Finally, a naive trading strategy illustrates the advantages of the new estimator: taking a long or short
position when the absolute value of the estimated Sharpe ratio is large enough leads to very different outcomes
depending on which estimator one uses.

1 Record statistics of random prices

Financial data exist in discrete time, which will be the point of view adopted in this paper. Let us assume that
the initial log price is S0 = 0 and that its value at time n > 0 follows

Sn = Sn−1 + rn + c (1)

where rn is the increment at time n, assumed to be identically and independently drawn from a continuous
distribution P (r), and c is a constant trend. Let the running maximum Mk = max1≤t≤k St (see Fig. 1). The
number of upper records of a time series of length n is the number of jumps of Mn, which by convention always
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includes M1; it will be denoted by R+ and its distribution by P (R+, n). In the same spirit, one defines R−, the
number of lower records, as the number of jumps of the running minimum.

Majumdar and Ziff (2008); Le Doussal and Wiese (2009); Majumdar et al. (2012) demonstrate that many
quantities of interest are fully characterized by the persistence function q−(n) of the process, i.e., the probability
that the price has never exceeded its starting value after n steps. It is advantageous to work with its characteristic
function q̃−(z) =

∑
n>0 z

nq−(n).

For example, the characteristic function of P (R+, n) is P̃ (R+, z) = [1− (1− z)q̃−(z)]R+−1q̃−(z) (Majumdar
and Ziff, 2008), while the characteristic function of the expected number of upper records m+(n) = E(R+)(n)
can be written as m̃+(z) = [(1− z)2q̃−(z)]−1 (Le Doussal and Wiese, 2009).

Generalized Sparre Andersen theorem (Andersen, 1953; Feller, 2008) provides a constructive way to compute
q̃−: for any continuous and symmetric P (r),

log (q̃−(z)) =

∞∑
n=1

zn

n
P (Sn < 0). (2)

A direct consequence of this theorem is the universality of the unbiased case c = 0 since P (Sn < 0) = 1
2 for

all symmetric and continuous distributions. As a consequence, q̃±(z) = q̃(z) is the same for all such distributions
and

P (R,n) =

(
2n−R+ 1

R

)
2−2n+R−1,

where R may either be R+ or R−, by symmetry (Majumdar and Ziff, 2008). This implies that the first two
moments of this distribution are

E(R±)(n) ' 2

√
n

π
, and E[((R± − E(R±))2](n) ' (2− 4/π)n.

Analytical results are harder to obtain in the case of non-zero drift (c 6= 0) since Sparre Andersen theorem
requires the full knowledge of all convolutions of the elementary increments. Denoting the standard deviation of
the increments rk by σ2, good approximations of the expected number of upper records are known for Gaussian
increments in the case of small Sharpe ratios, i.e., when c/σ � 1 and n� 1 while cn/σ � 1 (Majumdar et al.,
2012):

E(R+)(c/σ, n) ' 2

√
n

π
+
c
√

2

σπ

[
n arctan(

√
n)−

√
n
]
. (3)

The case of heavy-tailed increments of finite variance has not been thoroughly investigated. We will focus
on Student’s t-distributions because of their abilities to describe fat-tailed and Gaussian returns. They are
known to describe the unconditional price return distribution (i.e., forgetting about volatility heteroskedasticity)
(Bouchaud and Potters, 2000; Longin, 2005; Opdyke, 2007) and innovations (see e.g. Bollerslev (1987)). Let us
therefore assume from now on that the price returns rk are distributed according to a Student’s t-distribution of
variance σ with ν degrees of freedom (we use this wording only to parametrize the return distribution), denoted
by P (r). Sparre Andersen theorem requires the knowledge of the n-time convoluted return distribution, denoted
by P (n)(r), of which no explicit expression exists for generic values of n and ν. In passing, P (n)(r) can be
explicitly computed for any value of n provided that ν is odd but the expressions quickly become cumbersome
as n grows (Nadarajah and Dey, 2005). This is why we shall resort to approximations.

Appendix A reports analytical results for the case ν = 3, i.e., for a tail exponent of 4.1 The resulting
expected number of upper records becomes, in the same limit c/σ � 1 and n� 1 while cn/σ � 1,

E(R+)(n, c/σ) ' 2
√
n√
π

+
c
√

2

σπ

[
n arctan(

√
n)−

√
n
]

+
c

σ

8√
3π3/2

√
n

(
atanh

√
1− 1

n
−
√

1− 1

n

)
. (4)

Although a first order expansion, Eq. (4) is not very accurate even in the limit of small n(c/σ), because the
approximations needed to obtain explicit equations are quite rough (see Fig. 2). However, it was worth computing
it for several reasons. First, it contains the correct dependence of E(R+)(n, c/σ) on n for small Sharpe ratios,
which means that one may use this functional form to fit numerical simulations. Second, the presence of the
third term, due to the difference between Gaussian and t-distributions at the origin, correctly implies that the
prices with positive trends and heavy tails (and small Sharpe ratios) have a larger expected number of price
records, which emphasises the importance of accounting for the tails of price return distributions when using
price records to estimate Sharpe ratios. Appendix B contains the derivation of E(R+)(n, c/σ) in the large Sharpe
ratio limit.



5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

nc σ

e
x
c
e

s
s
 n

u
m

b
e

r 
o

f 
re

c
o

rd
s

Student, numerics

Student, theory

Gauss, numeric

Gauss, theory

Figure 2: Excess number of records E(R+|c/σ, n)− E(R+|0, n) for biased random walks with Student-t
increments (ν = 3). Interrupted lines are theoretical predictions and continuous lines are from numerical
simulations. c = 0.001, σ = 1, averages over 107 samples.
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Figure 3: Schematic explanation of the idea behind the permutation estimator of Sharpe ratios: one computes the
difference between total drawup and drawdown durations, or equivalently, the number of jumps of the running
maximum (dashed lines) and the number of jumps of the running minimum (dotted lines) of the cumulated
sums of the sample values, averaged over many random permutations. By convention, the first point counts as
a first jump for both the running maximum and minimum.

2 Estimating Sharpe ratios with permutations

The fact that the expected number of price records is a monotonous function of the Sharpe ratio θ = c/σ means
that one may estimate the latter from measures of the former. The main problem of a number of records is that
it is an integer number by definition, which yields an estimator with unacceptable precision for short time series.
The fundamental idea of the r-statistics (Challet, 2015), in this context, consists in assuming that its log returns
are i.i.d.. In that case, one may build many other log price paths based on random permutations of the original
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Figure 4: Efficiency of the record-based estimator θ0 relative to that of the vanilla estimator, defined by the ratio
of the variance of the new estimator θ0 and the usual one θS as a function of the true Sharpe ratio c/σ of the
synthetic data. Averages over 106 samples per point; record numbers have been averaged over 1000 permutations;
Student-distributed increments with tail exponent set to 4.
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Figure 5: Efficiency of the record-based estimator θ0 relative to that of the straightforward t-statistics, defined
by the ratio of the variance of the new estimator θ0 and the usual one θS as a function of the true Sharpe ratio
c/σ of the synthetic data. Averages over 106 samples per point for N = 500 and N = 1000, and 107 samples per
point for N = 50; record numbers have been averaged over 1000 permutations; Gaussian-distributed increments.

returns and thus measure the average number of records of the cumulated sums over many permutations (see
Fig. 3). Mathematically, denoting the random permutation of index i ∈ {1, · · · , n} by π(i) and the ensemble
of all permutations by Π, the average number of records is R̄+ = 1

|Π|
∑

π∈ΠR+,π where R+,π is the number of

upper records of Sn,π =
∑n

m=1 rπ(m). In practice, one restricts computations to a subset of Π for speed reasons,
which has little influence on the end result. The new Sharpe ratio estimator is then R0 = R̄+ − R̄−.
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Figure 6: Left plot: parametric fit of the number of degrees of freedom of Student’s t-distribtuion in a sliding
window of 252 close-to-close returns of SPY. Right plot: estimated Sharpe ratios with the new estimator and
from a vanilla estimation. 1000 permutations have been used to estimate R0.

Equation (4) implies that R0 is also a function of θ, hence that one may invert the exact relationship
E(R0)(n, θ) to infer θ. Note that E(R0)(n, θ) 6= E(R̄+)(n, θ)− E(R̄−)(n, θ) because the number of upper and
lower records of a single random walk are not independent. Let us denote by θ0 the Sharpe ratio inferred from
R0. The standard deviation of θ0, denoted by σθ, is obtained by the method of Deltas, i.e., from the relationship
σθ = σR

1
dE(R0|n,θ)

dθ

where σR is the standard deviation of R0; the numeric derivative of E(R0|n, θ) was computed

numerically with splines. The relative efficiency of θ0 with respect to the straightforward estimator θS = µ̂/σ̂
is then defined as ρ = σ2

S/σ
2
R where σS is the standard deviation of θS . Figure 2 reports the relative efficiency

of θ0 for various N for Student’s t-distributed returns and ν = 4. The new estimator is unambiguously more
powerful than the vanilla estimator. This result holds as long as the returns are heavy tailed.

For the sake of completeness, we computed the efficiency of record statistics for log prices with Gaussian
increments. Since the vanilla estimator is asymptotically optimal in this case (Neyman and Pearson, 1933), any
other estimator is bound to be less efficient for large N . Figure 5 plots the relative efficiency of θ0 for Gaussian
increments, which depends on c/σ. Remarkably, θ0 may be slightly more efficient than the t-statistics itself for
small N .

3 Application to real data

The i.i.d. assumption is totally unrealistic regarding asset price returns, if only because of volatility
heteroskedasticity. Applying straightforwardly the above estimator would therefore make little sense on long
time series. The approach followed here is to consider smaller time windows and to assume that stationarity
approximately holds in each time window. The second current limitation of the proposed estimator to keep in
mind here is that it does not account explicitly for skewness. At any rate, this section is meant to provide a
clear illustration of how different the estimates of both methods may be.

The method is as follows: we first perform extensive numerical simulations to establish the relationships
E(R0|n, θ, ν) for ν = {2.5, · · · , 10} with increments of 0.1 and n = 252 (a year of daily data); we take 31 values
of θ ∈ [0.001, 1] that grow geometrically. Since there is little difference between a Gaussian distribution and
a Student’s t-distribution when ν = 10, this range of values of ν is able to account for a variety of market
conditions. Then, in each time window, we measure R0 averaged over 1000 permutations. In order to find
the corresponding Sharpe ratio, we assume that price returns are conditionally leptokurtic (Bollerslev, 1987):
in each time window, we fit the returns with Student’s t-distribution by maximum likelihood and obtain an
estimate ν̂. Finally, Sharpe ratios are determined from the pre-computed relationship between R0 and θ with
ν ' ν̃ = round(10ν̂)/10, bounded by 2.5 and 10.

Figure 6 shows the difference between annualized Sharpe ratios of SPY estimated with the new and vanilla
estimator. When ν̃ is close to 10, both estimators yield the same Sharpe ratio, as expected. On the other hand,
when tails are heavier, i.e. when ν̃ < 10, the two estimates significantly differ. Indeed, the new term in Eq. (4)
with respect to Eq. (3) implies that vanilla estimates are too large in absolute values. This is confirmed in Fig.
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Figure 7: Discrepancy of the estimates of the annualized Sharpe ratio of SPY with moving time windows of 252
days between the new and the vanilla estimators. 1000 permutations have been used to estimate R0.
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Figure 8: Cumulated performance of a trading strategy consisting in investing when the estimated annualized
Sharpe ratio is larger than 1 in absolute value; short positions are allowed in case of negative Sharpe ratio;
estimates over rolling windows of 252 trading days (close-to-close price returns). Left plot: SPY. Right plot:
equivally weighted portfolio built with same strategy applied to 400 equities whose symbols start with A;
unbiased historical database of liquid assets (price larger than $20, rolling median daily volume larger than
250000 shares, computed over 60 trading days rolling windows); no transaction costs. 1000 permutations have
been used to estimate R0.

7. The difference between both estimates is very large in leptokurtic times, e.g. in 2008 and 2009; in addition,

in these difficult times, the new estimator is clearly less volatile.

The fact that the moment-based method overestimates the Sharpe ratio in leptokurtic times means that

anybody using it for trading purposes would be lead to take wrong trading decisions more often (the power

of the r-statistics is indeed much larger than that of t-statistics for heavy-tailed data (Challet, 2015)). Let us

try the following naive trading strategy (without transaction costs): whenever the estimated annualized Sharpe

ratio is larger than 1 in absolute value in the last 252 close-to-close price returns, one takes a long or short

single-day position, depending on the sign of the Sharpe ratio. Figure 8 reports the cumulated performance of

this strategy when applied to SPY and to 400 US equities for the period 1995-01-01 to 2015-06-30. The difference

is unambiguous and stems from periods either with a marked change of trend or high volatility.
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4 Discussion

The proposed Sharpe ratio estimator is robust, efficient, and well-behaved as it does not rely on moment
estimation. Large returns are not regarded as outliers, but contribute to record statistics in a smooth way. In
addition, a real outlier (due e.g. to a data error, or a corporate action) may only create one spurious additional
price record, while two outliers of the same magnitude and opposite signs have only a mild influence on R0.
Finally, the robustness of the estimator lies in the fact that the latter is based only on the duration of drawdowns,
not on their amplitudes. This is to be contrasted with other quantities related to drawdowns. For example
the expectation of the maximum drawdown of a Brownian motion is a known function of the Sharpe ratio
(Magdon-Ismail et al., 2003), but is very sensitive to outliers, by definition.

Because of the lack of exact results, using this estimator requires to compute once the relationship between
the number of upper records and Sharpe ratios for a given time series length numerically, which takes a few
hours with current computers (full source code is available).

Estimating Sharpe ratios with price record/drawdown statistics is not limited to Student’s t-distributed
returns, as indeed one may calibrate their relationships for any return distribution with finite variance. In
addition, the method introduced in this paper provides a generic way to build many types of estimators with
record statistics as long as the relationship between price record statistics and the measurable to estimate is
monotonic. For example, it may be used to estimate the drift of a Lévy process.

The main limitations of the proposed estimator are the assumptions of i.i.d and symmetric increments.
Both must be accounted for numerically for the time being. An interesting challenge is to incorporate serial
correlations into the analytical computation of record statistics: numerical results point to simple corrections in
the case of AR(1) and GARCH(1,1) models (Wergen, 2014). Practically, a way to respect return auto-correlation
and volatility heteroskedasticity is to use block-bootstraps, as in Ledoit and Wolf (2008).

Full source code (R and C++) and pre-calibrated estimators for time series of length 252 are available at
https://github.com/damienchallet/moment-free_sharperatio .

An interactive webpage producings the plots of Section 3 for any symbol and time period may be found at
https://brillant.shinyapps.io/moment-free_Sharpe_ratio .

A Expected number of records in the small Sharpe ratio limit

In this limit, one may use a first order expansion of the reciprocal cumulative function

P (Sn > 0) =
1

2
+ P (n)(0)cn+O([cn]2). (5)

One therefore needs to compute P (n)(0). Since the increments are assumed to be independent,

P (n)(0) =
1

2π

ˆ ∞
−∞

φ(n)(t)dt =
1

2π

ˆ ∞
−∞

[φ(t)]ndt,

where φ(n)(t) is the characteristic function of P (n)(x), and φ(t) that of P (1)(r) = P (r). Even if Eq. (5) only
requires the computation of P (n)(0), which is nevertheless impossible for any n and ν. However the ν = 3 case
leads to workable expressions. One finds P (n)(0) = en

σπE−n(n), where En(z) is the exponential integral function.
The specific form n = −z of the exponential integral function is easy to compute in a recursive way by integration
by parts:

E−k−n(k) =
e−k

k
+
k − n
k

E−(k−n−1)(k)

E0(k) =
e−k

k
.

Therefore, after some elementary computations, E−n(n) = e−n

n
n!
nn

(∑n
s=0

ns

s!

)
and

P (n)(0) =
1

σπ

1

n

n!

nn

n∑
s=0

ns

s!
. (6)

Using the asymptotic expansion Kn =
∑n

s=0
ns

s! = en[ 1
2 +

√
2

3π
1√
n

+O(n−1)] and the usual Stirling expan-

sion, Eq. (6) then becomes P (n)(0) = 1
σ

1√
2πn

+ 2
σπ
√

3n
+O(n−3/2) and thus, in the case of small drifts, Eq. (5)

reads

P (Sn > 0) =
1

2
+
c

σ

2

π
√

3
+
c

σ

√
n

2π
+O(n−1/2).
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Higher-order expansions of Kn and n! contribute terms of order n−1/2 that are negligible. It is noteworthy
that the additional correction for Student increments does not depend on n; accordingly, it is relevant for any
value of n and has a larger relative weight for smaller n; this is consistent with the fact that convolutions of
Student’s t-distributions with ν = 3 converge to a Gaussian distribution. Sparre Andersen theorem yields

q̃−(z) =
1√

1− z

(
1 +

∞∑
n=1

c

σ

zn√
2πn

)
− c

σ

2

π
√

3

log(1− z)√
1− z

+O[(c/σ)2]. (7)

The generating function of the number of records is then (Le Doussal and Wiese, 2009)

m̃+(z) ' 1

(1− z)3/2

[
1 +

c√
2πσ

∞∑
n=1

zn√
n
− 2c

σπ
√

3
log(1− z)

]
.

The two first terms in the brackets are the same ones as those of Gaussian biased random walks (Majumdar
et al., 2012). The third term is new and due to the difference between a Gaussian and a t-distribution at the
origin. The only way to make progress is to approximate sums by integrals, which yields

− 1

(1− z)3/2
log(1− z) ' 2√

π

∑
n≥1

[
2
√
n

(
atanh

√
1− 1

n
−
√

1− 1

n

)]
zn, (8)

which is not a very good approximation even for large n but gives the correct asymptotic
√
n dependence,

with an additional logarithmic correction brought by atanh
√

1− 1
n −

√
1− 1

n . Finally, approximating n by

n− 1 as in Wergen (2014) and identifying each term of the generating function with the value one is interested
in gives

E(R+)(c/σ, n) ' 2
√
n√
π

+
c
√

2

σπ

[
n arctan(

√
n)−

√
n
]

+
c

σ

8√
3π3/2

√
n

(
atanh

√
1− 1

n
−
√

1− 1

n

)
. (9)

Given its derivation, this formula is relevant in the limit cn� σ and large n.

B Expected number of price records in the large Sharpe ratio limit

Although quite rare in a financial context, the large Sharpe ratio limit also makes it possible to derive some
analytical insights. Majumdar et al. (2012) give results for large, but not too large, cn/σ. Indeed, the central
limit theorem states that the convergence of the distribution of convoluted variables to a Gaussian distribution
occurs from the center of the distribution. This implies that the tails of any non-Gaussian distribution are non-
Gaussian. Thus, intuitively, when cn/σ is large enough (whose meaning will be discussed below), P (xn < cn)
comes from the non-Gaussian tails. This will lead to markedly different results for Student’s t-distributions
since the tails of convoluted t-distributions keep their power-law nature. Bouchaud and Potters (2000) give an

intuitive argument to compute the n-time convoluted return r
(n)
0 at which the Student and Gaussian parts of

the distribution have equal importance and find that r
(n)
0 ' σ

√
n log n for ν = 3. This means that the value of

n0 at which the power-law tail starts to prevail is such that cn0 ' σ
√
n0 log n0, i.e.,

c

σ

√
n0 '

√
log n0. (10)

Since the convoluted distribution has a continuous first derivative, there is no sharp transition between
the Gaussian and power-law regimes, hence n0 only approximately indicates where the Gaussian approximation
begins to break down. Figure 9 plots n0(c/σ) and shows these two regions. In the region well below the line, a
Gaussian approximation holds for Student convolutions. Reversely, when n� n0(c/σ),

P (Sn < 0) '
ˆ ∞
cn

2σ3n

πx4
dx =

(σ
c

)3 2

3πn2
,

hence log (q̃−(z)) =
(
σ
c

)3 6
√

3
π

∞∑
n=1

zn

n3 , thus

m̃+(z) =
1

(1− z)2
exp

[
−
(σ
c

)3 2

3π

∞∑
n=1

zn

n3

]
' 1

(1− z)2

[
1−

(σ
c

)3 2

3π

∞∑
n=1

zn

n3
+O

[( c
σ

)6
]]

.
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Figure 9: Limiting n0 as a function of c/σ, from Eq. (10). Convoluted Student’s t-distributions may be
approximated by a Gaussian distribution below the continuous line, and by a power-law above this line.
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Figure 10: Large signal-to-noise ratio limit: difference of record rate between random walks with Gaussian
increments and Student’s t-distributed increments. The rate was determined as the average slope [m(200)−
m(100)]/100 (averages over 105 samples).

Finally, one finds without major difficulty

m̃+(z) '
∑
n≥0

[
(n+ 1)

(
1−

(σ
c

)3 2

3π
K[1 +O(n−1)

)]
zn

and

m+(n) ' n
[
1−

(σ
c

)3 2

3π
K

]
.

Numerically, K ' 1.202 ' 6
5 for large n; approximating sums with integrals yields the very different

K = 1/2. Thus the number of records increases linearly for large n m+(n) ' nµStudent with an asymptotic rate

given by µStudent ' 1−
(
σ
c

)3 4
5π , to be compared with µGauss ' 1− σ

c
1√
2π
e−

c2

2σ2 . Figure 10 plots the difference of

the record rate between Gaussian- and Student’s t-distributed (ν = 3) increments as a function of c/σ. Whereas
the number of records of random walks with Student increments are larger than those with Gaussian ones for
small Sharpe ratios, Fig. 10 shows, somewhat surprisingly, that Gaussian increments lead to a larger rate of
records for very large Sharpe ratios.
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Notes

1This precise value is the only one for which analytical computations seem workable. It also happens to be in line with the
average tail exponent of US equities daily and intraday price returns (Jansen and De Vries, 1991; Plerou et al., 1999; Bouchaud and
Potters, 2000; Longin, 2005).


